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Abstract

Cubesats with imaging payloads face unique challenges in terms of stringent pointing accuracy and stability requirements.
Team Anant is a student-run technical team working to build a 3U Cubesat. This paper discusses the implementation,
validation and integration of an attitude estimation algorithm as part of the satellite’s Attitude Determination System
(ADS). The ADS hardware usually comprises sensors such as an IMU, magnetometer, and sun sensors. Validation
methodology and architecture design, which aims to satisfy the allocated pointing budget, are also discussed. The paper
introduces the motivation to choose Murrell’s version Kalman Filter and a comparison with popular alternatives. This is
followed by some prerequisites, after which, the paper describes the top level overview and testing framework developed
for the kalman filter. This requires emulating the in-orbit environment and tracking the true state to establish the
performance limit with a predefined performance metric. The verification procedure adopted by the team is discussed in
detail. Apart from analysing the expected trend of the filter parameters over time, a quasi Monte Carlo (qMC) approach
was also followed. Furthermore, the Cramer Rao Bound is used to establish a lower bound on the error covariance
matrix. Lastly, an approach for fine sensor selection is provided based on emulating its integration with the ADS. The
paper concludes by discussing the lessons learnt and the important stages in the development and testing of an attitude
estimation algorithm.
Keywords: Attitude Estimation · Kalman Filter · Satellite Simulator ·Monte Carlo · Pointing Metric

1. Introduction

Obtaining accurate and repeatable attitude information
is an essential task for satellites with pointing requirements.
This paper considers the implementation of an attitude es-
timation algorithm for a nanosatellite with an imaging
payload. Attitude knowledge forms the basis for the point-
ing modes of the satellite [1], which are (a)Imaging (b) GS
Tracking and (c) Sun Pointing.

The methodology followed to design an ADS for the
cubesat has been elaborated in this paper. The need to
develop and validate a robust system naturally arises. The
hardware and software choices should satisfy any pointing
accuracy requirements derived from the mission objectives.

Estimation algorithms provide a distinct advantage over
determination techniques, and improve their performance
by using past values to influence the current state estimate.
The first section of the paper highlights the motivation
behind selecting Murrell’s version MEKF (Multiplicative
Extended Kalman Filter) for the purposes of attitude es-
timation, in comparison with various other appproaches
and variations. Most of these algorithms use quaternions
as a standard attitude parametrization. The mathematical
prerequisites follow this section and provide some context

to the analysis and validation of the filter demonstrated in
later sections of the paper.

Apart from implementing the filter itself, it is also cru-
cial to emulate its expected working environment and the
errors induced in the algorithm’s input. Therefore, simu-
lating the space environment and modelling the sensors
accurately is essential to analyze its expected performance
in orbit. The team has designed an indegeneous Small
Satellite Simulator which provides the model with real-
istic inputs, while simultaneously tracking the true state
of the satellite. The latter is essential to characterize the
pointing accuracy and stability of the ADS. The pointing
performance metric for the same is also detailed upon.

The accuracy and convergence of the filter depends on
the initial estimate and the parameters used. For example,
the initial error covariance matrix has a considerable effect
on the filter. To optimize the performance of the filter given
a particular set of hardware components, tuning of such
parameters must be performed. The relevant parameters
and the tuning approach for the initial error covariance
matrix is elaborated upon, after which the results of the
simulation are shown.

There are several ways to validate the operation and im-
plementation of the kalman filter. A variant of the popular
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Monte Carlo method was used to find a reliable estimate
of the filter performance. The large number of runs take
into account variations in the initial conditions and demon-
strate the consistent behaviour of the filter. Additionally,
the Cramér Rao bound is compared with the knowledge
uncertainty to further validate the performace of the filter.

In the last section, we discuss the various challenges
faced, and approaches that should be used to develop an
attitude determination system. A process for selection
of the high accuracy sensor is also described. The paper
concludes by summarizing the results and elaborating on
any future work.

2. Multiplicative Extended Kalman Filter

2.1 Overview

Kalman filter is an algorithm that provides estimates
of some unknown variables, given the measurements ob-
served over time [2]. In this case, it can be used to estimate
the attitude of the satellite.

Quaternions are a popular choice for attitude param-
eterization because they have the minimum number of
parameters that provides singularity free representation of
SO(3) group. However, they must always follow the unit
norm constraint, thus limiting their use in some cases. [3]

Assuming an unbiased estimate of the attitude quater-
nion, the additive representation of kalman filter leads to
a violation of the normalization constraint. Furthermore,
when the quaternion estimate is assumed to be biased, the
additive representation results in an ill-conditioned error
covariance matrix. Hence, a standard additive kalman filter
is not suitable for attitude estimation using quaternions.
This has been extensively discussed in [4].

Considering the lack of a robust solution to deal with
these drawbacks, the Multiplicative Extended Kalman Fil-
ter (MEKF) was chosen to circumvent these problems.

Gyroscopes are crucial attitude sensors used in many
satellites that require high attitude accuracy. While im-
plementing MEKF, either a full gyro calibration can be
performed or a simple bias estimation can be performed
directly on the readings. [5]

Additionally, gain calculation in other MEKF filters
require inverting a 3N×3N matrix where N is the number
of measurement vectors available. Murrell’s Version of
Kalman Filter (now referred to as Kalman Filter in this
paper) avoids this extensive computation by exploiting the
principle of superposition, in which each vector observa-
tion is processed one at a time.

As detailed in the subsequent sections, each vector ob-
servation is processed separately, leading to inversion of a
3×3 matrix N times, instead of a 3N×3N matrix. This
makes the selected approach computationally efficient.

2.2 Gyroscope Integration
One way to incorporate gyro errors in the filter is by

modifying standard EKF equations to use gyro data as mea-
surements. Theoretically, this should give better results but
it usually performs poorly in practice. The alternative is to
use gyro information directly in the dynamic model. This
approach is called Dynamic Model Replacement Mode.
[6].

The mathematical model for a three-axes rate integrat-
ing gyroscope has been described in [7] and is given by:

ω(t) = ω
true(t)+β

true(t)+ηv(t) [1]

β̇
true(t) = ηu(t) [2]

w(t) =
[
η

T
v (t) η

T
u (t)

]T
[3]

where, ω true is the true angular velocity, ω is the measured
angular velocity, and β true is the true bias (or drift). ηu and
ηv are independent zero-mean Gaussian white-noise pro-
cesses with spectral density σ2

u I3 and σ2
v I3 respectively.

w is a vector of Gaussian white noise processes.
A more robust calibration model of a general three-axes

gyroscope would consist of 3 bias terms, and a 3×3 matrix
consisting of 3 scale factors and 6 misalignments terms.
These misalignment terms and scale factors have been
ignored in this paper, due to computational considerations.
However, to achieve more accurate results, these terms can
also be incorporated. [7]

2.3 Murrell’s Version Extended Kalman Filter
The basic idea of MEKF is to have two different at-

titude representations and then continuously switch be-
tween them. Since rotation vectors have no constraint on
their norm, a three-component rotation vector δv will be
used to represent local attitude error as part of state vector.
Whereas quaternions will be used to represent the global
attitude of satellite.

The true quaternion, in terms of quaternion error and
estimated quaternion is given by:

q true = δq(δv)⊗ q̂ [4]

In the above equation,

A⊗B = [A⊗]B

where

[A⊗] =


A4 A3 −A2 A1
−A3 A4 A1 A2
A2 −A1 A4 A3
−A1 −A2 −A3 A4


Note that in Eq. [4] q true , δq(δv) and q̂ are all normal-
ized. The state vector ∆x will be

∆x(t) =
[

δv(t)
∆β (t)

]
[5]
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where, ∆β (t) = β true− β̂ .
MEKF is based on linearizing non-linear systems. This

causes the filter to be highly dependent on the initial value
of the quaternion and the error covariance matrix. The
initial quaternion in MEKF is provided by the QUEST
algorithm. The effect of initial value of the error covariance
matrix will be discussed in Section 4.3.

The Murrell’s Version Kalman Filter has been imple-
mented in four steps:

1. Propagation: Computes the apriori error covariance
matrix using the attitude model.

2. Measurement Update: Revises the state vector and
Kalman Gain using sensor measurements.

3. Reset: Transfers attitude information from local to
global representation.

4. Quaternion Propagation: Propagate the global attitude
quaternion to the next discrete timestep.

The following sections describe these four steps in de-
tail.

2.3.1 Propagation

Time derivative of qtrue in eq [4] is

q̇ true = δ q̇⊗ q̂+δq⊗ ˙̂q [6]

True and estimated quaternions obey the following kine-
matic equations respectively:

q̇ true =
1
2

[
ω true

0

]
⊗qtrue [7]

˙̂q =
1
2

[
ω̂

0

]
⊗ q̂ [8]

where ω true and ω̂ are true and estimated angular velocities
respectively. The above two equations imply that

1
2

[
ω true

0

]
⊗δq ⊗ q̂ = δ q̇⊗ q̂+

1
2

δq⊗
[

ω̂

0

]
⊗ q̂ [9]

On post-multiplying q̂−1 on both sides of the equation, and
substituting ω true = ω̂ + δω , the above equation can be
approximated to:

δ q̇ =−
[

ω̂×δq1:3
0

]
+

1
2

[
δω

0

]
[10]

Using Taylor Series expansion, δq can be approximated
as:

δq(δv)≈
[

δv/2
1

]
= Iq +

1
2

[
δv
0

]
[11]

After substituting Eq. [11] in the above equation, a
simplified form is obtained i.e.

δ v̇ =−ω̂×δv+δω [12]

The expectation of the above equation is

δ ˙̂v =−ω̂×δ v̂ [13]

The state vector satisfies the following linearized dy-
namical equation

∆ẋ(t) = F(t) ∆x(t)+G(t) w(t) [14]

By using Eq. [12], matrices F(t), G(t) can be obtained
as

F(t) =
[
−[ω̂(t)×] −I3

03×3 03×3

]
[15]

G(t) =
[
−I3 03×3
03×3 I3

]
[16]

where

[V×] =

 0 −V3 −V2
V3 0 −V1
−V2 V1 0


Spectral density Q(t) of w(t) is given by

Q(t) =
[

σ2
v I3 03×3

03×3 σ2
u I3

]
[17]

For discrete time Kalman Filter, the state transition
matrix at the kth time is given by

φk = I6 +Fk∆t [18]

where I6 is 6×6 identity matrix and Fk is obtained using
[15].

The apriori error covariance matrix is then given by

P−k = φkP+
k−1φk

T +GkQkGT
k [19]

where Gk and Qk are obtained using [16] and [17] respec-
tively.

2.3.2 Update

In this step, the state vector is updated. It is initialised
to zero before the start of the step, as explained in Sec-
tion 2.3.3. In the Kalman Filter, the update step occurs in
batches depending on the number of sensor reading avail-
able at a given time. If N sensor readings are available at
kth time instant, and i denotes the ith sensor reading, then:

∆x−ki
=

{
0 if i = 1
∆x+ki−1

if i 6= 1
[20]
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∆x+k = ∆x+kN
[21]

P−ki
=

{
P−k if i = 1
P+

ki−1
if i 6= 1

[22]

P+
k = P+

kN
[23]

The measurement equation for Kalman Filter is given by

yk =


A(qtrue)r1
A(qtrue)r2

...
A(qtrue)rN

+


n1
n2
...

nN

= h(xtrue
k )+nk [24]

and
R = blkdiag

[
R1 R2 . . . RN

]
[25]

where blkdiag means block diagonal matrix, and Ri is the
covariance of measurement noise ni.

The measurement errors in sensors are assumed to be
isotropic, hence Ri = E[ni ni

T ] = σ2
i I3.

The true attitude matrix A(qtrue) is related to the apriori
attitude A(q̂−) through

A(qtrue) = A(δq) A(q̂−) [26]

The matrix A(δq) can be approximated as

A(δq)≈ I3− [δv×] [27]

For a single sensor, true and estimated body vectors are

btrue
i = A(qtrue)ri [28]

b̂−i = A(q̂−)ri [29]

Hence, ∆bi is given by

∆bi = btrue
i − b̂−i =−[δv×]A(q̂−)ri = [b̂−i ×]δv [30]

Using Taylor expansion it can be written as

hki(x
true
ki

)≈ h(x̂−ki
)+Hki(x̂

−
ki
)

[
δ v̂
∆β̂

]
i

[31]

where h(x̂−ki
) is the estimated observation. From here on it

follows that,

Hki(x̂
−
ki
)

[
δ v̂
∆β̂

]
i
= hki(x

true
ki

)−h(x̂−ki
)

= A(qtrue)ri−A(q̂−)ri

= [b̂−i ×]δv

[32]

The measurement sensitivity matrix for kth time and ith

sensor reading is given as

Hki(x̂
−
k ) =

[
[b̂−i ×] 03×3

]
=
[
[A(q̂−k )ri×] 03×3

]
[33]

where, i varies from 1 to N.
The Kalman Gain is given by

Kki = P−ki
HT

ki
(HkiP

−
ki

HT
ki
+Ri)

−1 [34]

Error covariance matrix and state vector are updated using
the following equations

P+
ki
= [I3−KkiHki ] P−ki

[35]

∆x+ki
= ∆x−ki

+Kki [bi−A(q̂−k )ri−Hki∆x−ki
] [36]

2.3.3 Reset

Kalman update step assigns a value to δ v̂+ and ∆β̂+,
but the global attitude still continues to be q̂− and β̂−.
The reset step moves the attitude information gained from
sensor measurements in the update step, from local attitude
error to global variables. The equations that govern the
reset step are:

q̂+ = δq(0)3⊗ q̂+ = δq(δ v̂+)⊗ q̂− [37]

β̂
+ = β̂

++0n = β̂
−+∆β̂

+ [38]

A first order representation of the error quaternion in terms
of error rotation vector is

δq(δ v̂+)≈
[

δv+/2
1

]
= Iq +

1
2

[
δv+

0

]
[39]

This implies

q∗ ≈
(

Iq +
1
2

[
δv+

0

])
⊗ q̂− = q̂−+

1
2

δv+⊗ q̂− [40]

The above equation is used to get the updated global quater-
nion (q̂+) by normalizing the approximation.

q̂+ =
q∗

‖q∗‖
[41]

Now that attitude information has been updated in
global variable, the state vector can be set to zero.

∆x−k+1 = 0 [42]

2.3.4 Quaternion Propagation

The discrete-time quaternion propagation is given by
the following equation:

q̂−k+1 = exp[(∆θ/2)⊗]q̂+
k ≈Θ(ω+

k )q̂+
k [43]

where,

Θ(ω+
k ) =

cos
( 1

2

∥∥ω
+
k
∥∥∆t

)
I3− [ψ̂+

k ×] ψ̂
+
k

−ψ̂
+T
k cos

( 1
2

∥∥ω
+
k

∥∥∆t
)
 [44]
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and

ψ̂
+
k =

sin
( 1

2

∥∥ω
+
k
∥∥∆t
)∥∥ω

+
k

∥∥ [45]

All these steps, as shown in Figure 1, were implemented
and tested in a framework developed by the team. The
details of that framework are discussed in the next section.

QUEST

if (k = 0) q0

Gyroscope

ωk
q−k (k 6= 0)

Propagate

P−k
P+

k−1(k 6= 0)

PO(k = 0)

Qk

Find

A(q−k )

Compute

Hki

i = 1

∆x−k1
= 0

P−k1
= P−k

Kalman Gain

Kki

Ri

Update Covariance

P+
ki

Update State

∆x+k

Sensor i

bi, ri

i < N

i = i+1

∆x−ki
= ∆xki−1

P−ki
= P+

ki−1

Reset

q+k

Quaternion Propagation

q−k+1

Next Time Iteration

P+
k

Next Time Iteration

YES

NO

Fig. 1: Kalman Filter: Flow Chart

3. Testing Framework

3.1 Small Satellite Simulator
The team developed an in-house satellite simulator to

accurately simulate the expected conditions in space [8].
Since the simulator was completely developed by the team,
it was possible to add features that were of special interest.

Numerous such features have been used in this study to
confirm the proper working of the filter. Some of them are
as follows:

1. Satellite State Propagation (SSP) Model: An RK-4
based numerical integration method has been imple-
mented to propagate the satellite’s position, velocity
and attitude.

2. Simplified Perturbations Model (SPM): An SGP
based model has been implemented to simulate the
various perturbations acting on the satellite while in
orbit.

3. Environment Model: Various modules have been de-
veloped to simulate the environment conditions in the
orbit:

(a) Sun Model: Determines the position of Sun over
time.

(b) Magnetic Model: Determines the Earth’s mag-
netic field based on the International Geomag-
netic Reference Field (IGRF) Model.

(c) Albedo Model: Determines the albedo caused
by the sunlight reflected by Earth’s surface.

(d) OLR Model: Determines the Outgoing Long-
wave Radiation emitted by the Earth’s surface.

4. Components Model: The different components on-
board a satellite have been simulated as well, includ-
ing various errors expected in their performance. The
details of relevant sensor models have been discussed
in Section 3.2.

• Sun Sensors
• Magnetometers
• Gyroscopes
• Accelerometers

The modular structure of the simulator also made it feasible
to integrate the Kalman Filter with it easily.

3.2 Sensor Modelling
3.2.1 Sun Sensor

The true sun vector (st) is obtained from the Small
Satellite Simulator explained in 3.1. The angular error in
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the sun sensor readings follow a normal distribution with
µ = 0 and σ = σs. This error is denoted by φs.

The cross product of a random unit vector r and st gives
a vector e. Using e and φs, a rotation matrix can be formed
i.e.:

R(e,φs) = I3− sin(φs)[e×]+ (1− cos(φs))[e×]2 [46]

where, e is the euler axis of R and φs is the euler angle.
The final sun sensor reading (sm) can be determined by

rotating the true vector using R, as shown in Figure 2.

sm = R(e,φs) st [47]

e

sm

st

φ

Fig. 2: Erroneous vector representation

Fig. 3: Sun Sensor Model

Given the error angle φs drawn from a probability dis-
tribution, the blue sphere segment shows the equiprobable
locations of the erroneous vector. The final readings of the
sun sensor are shown in Figure 3.

3.2.2 Magnetometer

MATLAB Sensor Fusion and Tracking Toolbox was used
to model the magnetometer. Functions magparams and
imuSensor were utilized for the same.

Parameters such as Rate Noise Density and Measure-
ment Range were selected based on the chosen magnetome-
ter PNI RM3100 [9]. Random Walk and Bias Instability
were not taken into consideration. Temperature bias and
scale factor were assumed to be zero.

The sensor was simulated with the parameters specified
in Table 1.

Fig. 4: Magnetometer Model

Table 1: Magnetometer Parameters

Parameter Value
Measurement Range 800 µT
Rate Noise Density 4×10−6 µT Hz−1/2

The sensor readings were as shown in Figure 4.

3.2.3 Gyroscope

MATLAB Sensor Fusion and Tracking Toolbox was also
used to model the gyroscope. Functions gyroparam and
imuSensor were utilized for the same.

As with the magnetometer, temperature effects on read-
ings were ignored for simulating the gyroscope as well.
The parameters of the model are based on the gyroscope
ADIS 16475, as shown in Table 2.
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Table 2: Gyroscope Parameters

Parameter Value
Random Walk 4.360×10−5 rad s−1Hz−1/2

Bias Instability 9.696×10−6 rad s−1

Rate Noise Density 5.230×10−5 rad s−1Hz−1/2

The sensor readings were as shown in Figure 5.

Fig. 5: Gyroscope Model

3.3 Integration
The Kalman Filter is implemented by using various

inputs from the Small Satellite Simulator (Section 3.1) and
Sensor Models (Section 3.2). These connections are shown
in Figure 6.

Since the performance of the Kalman Filter is highly
dependent on the choice of initial estimate, the QUEST
algorithm is utilized for it. [10]

Small Satellite Simulator

Sensors
On Board

Orbit Propagator

Kalman Filter

Fig. 6: Information flow between blocks

The inputs to the Sensor Model Block provided by the

Simulator are given below. All of them are represented in
the body frame.

• Sun Intensity Vector: As an input to sun sensor.

• Magnetic Field Vector: As an input to magnetometer.

• Angular velocity of the satellite: As an input to gyro-
scope.

The inputs to the Kalman Filter provided by the Simu-
lator are:

• Sun Intensity Vector (ECI): r1

• Magnetic Field Vector (ECI): r2

The Sensor Model provides the following inputs to the
Kalman Filter:

• Sun Sensor reading: b1

• Magnetometer reading: b2

• Gyroscope reading: ωk

The Kalman Filter obtains the quaternion for the first
iteration from the QUEST algorithm. The other inputs to
the Kalman Filter are:

• Tuned initial Error Covariance Matrix (P0) (Section
4.3).

• Measurement Noise Covariance Matrix (R), based on
sensor error (σi).

• Process Noise Covariance Matrix (Q), based on σu
and σv of the gyroscope.

The output of the Kalman Filter is eventually comapred
against the true ECI-to-Body quaternion received from the
Small Satellite Simulator. The whole process is described
as a flowchart in Figure 1.

4. Implementation

4.1 Pointing Metric
The attitude of a spacecraft must satisfy pointing and

stability requirements which are derived from the science
objectives and other pointing modes. Analysis was focused
on imaging, since that requires tracking the orientation (in-
stead of a vector) and also has a stricter pointing criterion.

Attitude estimation is imperfect and contributes it’s
share of error; this pointing error source (PES) is allocated
a certain error budget. This requires defining an appropri-
ate metric and testing the estimation against it. The ESA
pointing standards[11] are used to establish a pointing
metric for pointing knowledge error.

Figure 7 shows the relevant time intervals over which
we measure absolute and relative, pointing and stability
knowledge.
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−1 0 1 2 3 4 5 6

∆tw1 ∆tw2

∆ts

Fig. 7: Time intervals

• Window time ∆tw: Time interval over which point-
ing errors can be observed and averaged. Relative
pointing error is defined for any time instant, relative
to the mean pointing error in one ∆tw.

• Stability time ∆ts: Mean of the time windows are
separated by a time difference of ∆ts, as shown in
Figure 7. This is used to observe the drift and repeata-
bility of the pointing errors between different time
windows.

The absolute knowledge error ek(t) is the difference be-
tween the true and estimated parameters. It is worth noting
at this point that the error parametrization is arbitrary to an
extent and would depend on the usage. As an example, for
sun pointing the half angle around the sun vector would
suffice. However, since imaging is more stringent, the
parameter selected is the error euler angle corresponding
to the error quaternion.

The Mean Knowledge Error (MKE) is the mean value
of the absolute knowledge error ek(t) over the specified
time interval ∆tw.

MKE = ek(t,∆tw) [48]

Assuming the filter has converged to a stable value, the
pointing accuracy can further be defined as a mean of the
MKE itself over all time windows.

The Knowledge Drift Error (KDE) is the difference be-
tween MKE’s taken over two time intervals, separated by
the stability time ∆ts, within a single observation period.
Similar to accuracy, the pointing stability (after conver-
gence) can be defined as a mean of the successive KDEs.

KDE = ek(t,∆t1)− ek(t +∆ts,∆t2) [49]

Hence, the error can be characterized by plotting
MKE/KDE versus time or taking a mean value of these
after convergence. The above definitions are implicit when
we talk about accuracy and stability in the later sections.

4.2 Effect of Error Covariance Matrix
It was observed that the performance of the Kalman

Filter heavily depended on the initial value of the error
covariance matrix (P0), given by:

P0 =

[
pq I3 03×3
03×3 pb I3

]
[50]

where I3 is 3×3 identity matrix, 03×3 is a 3×3 zero-
matrix, pq is the Error Covariance Matrix for error vector
(δv) and pb is the Error Covariance Matrix for bias (∆β )
as described in Eq. [5]

The importance of the P0 has been noted in [12, 13, 14].
Due to the highly non-linear nature of attitude estima-

tion, the filter diverges if the diagonal elements of P0 are
very small. The Kalman Filter relies more heavily on the
prediction if the value of P0 is small. However, the inac-
curacy of the prediction causes the filter to diverge. In
contrast, if P0 is increased to a high value. it results in a
singular value for updated matrix P+

k . Hence proper tuning
of P0 is crucial for optimal filter performance.

4.3 Tuning
Mean Knowledge Error and Knowledge Drift Error, as

defined in Section 4.1 are used to describe the accuracy and
stability of the Kalman Filter post-convergence. The filter
is assumed to be converged when successive KDEs falls
below a certain threshold. The methodology involved in
evaluating the performance of the Kalman Filter is detailed
below.

The absolute knowledge error, ek(t) is measured over
a single observation period tn. The MKE is computed
over consecutive minute-long time windows. As defined
in Section 4.1, this implies:

∆tw = ∆ts = 60 s [51]

In the current implementation, the Kalman Filter is
assumed to have converged when the KDE falls below a
threshold of 0.1 at least 10 times. The time of convergence
is denoted as tc.

Post convergence, the mean and standard deviation of
the MKEs is computed:

µ =
∑

N
i=1 MKE(ti)

N
[52]

σ
2 =

∑
N
i=1 MKE2(ti)

N
−µ

2 [53]

where N is the number of minute-long intervals post-
convergence.

Eq. 52 can be correlated with the accuracy of the
Kalman Filter. The lower the mean of MKEs, the higher
the accuracy. Similarly, Eq. 53 correlates with the stability
of the Kalman Filter. The variance measures the devia-
tion in the ek(t) from the mean value. Lesser the deviation,
greater the stability of the Kalman Filter post-convergence.
Based on the mission requirement the value of required
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accuracy, required stability and required convergence time
is obtained. The initial value of P0 as described in previous
subsection, depends on pq and pb which are defined as:

pq = 10−aI3 [54]

pb = 10−bI3 [55]

The initial error covariance matrix P0 was changed by
varying the dependent parameters a and b within certain
intervals. The accuracy, stability and convergence time
was computed for each case. The optimal P0 is obtained
when these values are within the defined requirements.

4.4 Implementation Results

The simulation for the Kalman Filter were performed
using the Small Satellite Simulator (Section 3.1), and the
chosen sensors (Section 3.2). The simulation was run for
2500 seconds with a time-step of 0.1 seconds (10 Hz),
which is compatible with the operation rates of the sensors.

4.4.1 Error Definition

Consider the estimated and true body frames. Both of
these are parametrized with respect to the reference frame
using the attitude quaternions q̂ and qtrue respectively.

To characterize and visualize the performance of the
kalman filter, the euler angle of the error quaternion is cal-
culated. The error quaternion δq represents the orientation
of the true body frame with respect to the estimated body
frame, as given in Equation 4.

θe = 2 cos−1([ δq ]1) [56]

Where [q]1 denotes the scalar part of the quaternion.

The error euler angle θe is used in the following sections
to verify the convergence values of the filter. Alternatively,
euler angles (Roll Pitch Yaw) may also be used to reflect
this error about different axes.

4.4.2 Results of Filter Run

The plots for bias, ∆bias, θe and the quaternion com-
ponents are given in Figure 8, 9, 10, 11 respectively. It
can be seen that the Kalman Filter converged well within
the simulation time, and was successfully able to track the
attitude of the satellite.

Fig. 8: Gyroscope Bias (◦/s) vs Time (s)

Fig. 9: Gyroscope Bias Error (◦/s) vs Time (s)

Fig. 10: Euler Error Angle (◦) vs Time (s)
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Fig. 11: Quaternion vs Time (s)

4.4.3 Results of Tuning

Figure 12 shows the post-convergence error in the
Kalman Filter for different initial Error Covariance Matri-
ces (P0). It is abundantly clear that the performace of the
filter improves when using a tuned P0 in comparison to an
untuned one. It can also be seen that the performace of the
filter degraded beyond control while using an extreme P0.

Fig. 12: Performance based on Initial Error Covariance
Matrix Tuning (s)

5. Validation

5.1 Inspection
A fundamental procedure to validate the performance

of a Kalman Filter involves observing the behavior of the
trace of the error covariance matrix (P+

k ) and Frobenius
Norm of Kalman Gain (Kk). [15]

A decrease in P+
k at each timestep implies a correspond-

ing decrease in the absolute knowledge error. It can be visu-
alised by plotting the variation in the trace of P+

k . This was
observed for an orbit. The variation for first few timesteps
is shown in Figure 13.

With each successive time instant, an optimal Kalman
Filter should learn to rely more on the estimate (via the
process) as compared to the measurement. Therefore, Eq.
34 implies that the (Frobenius Norm of) Kalman Gain
should decrease over time. Figure 14 shows the behaviour
of Frobenius Norm of the Kalman Gain for a few timesteps.
These results give credence to the implemented Kalman
Filter.

Fig. 13: Trace of Error Covariance Matrix vs Time (s)

Fig. 14: Frobenius Norm of Kalman Gain vs Time (s)

5.2 Quasi-Monte Carlo Simulations
Monte Carlo Simulation (MCS) is a method to study

the probability of different outcomes in a process which
relies heavily on a large input space of variables. It is a
popular technique used to understand the impact of risk
and uncertainty, especially in prediction and estimation
models.

IAC–20–B2.7.11 Page 10 of 14



71st International Astronautical Congress (IAC) - The CyberSpace Edition, 12-14 October, 2020.
Copyright © 2020 by the International Astronautical Federation (IAF). All rights reserved.

A typical MCS involves the selection of input variables
from a pseudo-random set of possible values, for each run
of the simulation. The large number of initial conditions
drawn from the sample space help paint a semi-exhaustive
picture of the performance of the test model.

Due to the need for running multiple iterations to avoid
inaccurate results, running a MCS can be computationally
expensive and time-consuming. Since the input variables
are supposed to be representative of the function space, the
pseudo-random generation leads to clumping and conver-
gence errors. To circumvent this problem, the team decided
to approach the initial sampling differently, following a
Quasi-Monte Carlo method.

Quasi-Monte Carlo simulation is identical to the tradi-
tional version, but uses quasi-random sequences instead
of pseudo-random numbers. Such sequences have a low-
discrepancy, which reflects on the equidistributed nature of
the samples. This offers a better performance against tradi-
tional pseudo random sequences for all four probabalistic
moments (Mean, Variance, Skewness, Kurtosis). Thus a
smaller and more uniform set of initial conditions can be
used to analyze the performance of the Kalman Filter.

Along with requiring the initial conditions for each run,
we also need to track the true state of the satellite to provide
a base to measure the performance of the filter. This true
state is deterministic and independent of the filter itself.
The next subsection describes the method to generate the
relevant parameters and the corresponding data sets.

5.2.1 Data Set Creation

Each Data set comprises the following parameters,
which need to be initialized and tracked through the at-
titude estimation process.

1. True Quaternion of the Body wrt ECI frame

2. Angular Velocity of the Body wrt ECI Frame, repre-
sented in the Body frame

3. Measurement Vectors for the purpose of attitude
determination, both in the Body and ECI Frame. In
this case, its the sun vector and magnetic field.

A program was created to choose the initial parameters
from a quasi-random pool, and propagate them to provide
the true state variables for all time instances. The following
approach was undertaken for each parameter. Keep in mind
that initial values are propagated through the appropriate
rotational dynamics for the body.

Fig. 15: S0 Vector Distribution

1. Angular Velocity: 18 uniformly-distributed vectors
were taken on the 3D sphere. This set was named S0.
All the 18 vectors in S0 were then given a constant
magnitude and used as the initial angular velocity
vector.

2. True Quaternion: An arbitrary but constant initial
orientation is selected for all iterations.

3. Sensor Values (Body): Similar to S0, identically
spaced sets are created for the measurement sensors.
Sn (where n is the index of the sensor) is different
from S0 by a constant, randomized rotation. Each
such set was then used as different possible initial
directions for different sensor readings.

4. Sensor Values (Reference): The initial sensor values
in the body frame, and true quaternion were used to
find the corresponding vectors in the reference frame.

Figure 15 shows the uniformly-spaced distribution of
the 18 vectors on a 3D sphere.

The assumptions taken for the propagation of these
variables are given below.

• The body is perfectly spherical, with a uniform den-
sity.

• The reference frame remains unchanged for the com-
plete duration of a simulation.

• The error in reference frame vectors used by the filter
is negligible.
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183 datasets were created for simulations. For each of
them, the variables were propagated for a total of 2500
time steps.

5.2.2 Simulation Result

The dataset produced in the previous section was then
used to run the Kalman Filter for multiple iterations. The
average error in the filter was then noted with respect to
time, and is plotted in Figure 16. This error decreases
over time, thus verifying the performance of the filter over
multiple quasi-random initial conditions.

Fig. 16: Average Error in Kalman Filter (◦) vs Time (s)

5.3 Cramér Rao Bound
5.3.1 Theory

Cramér Rao Bound of an unbiased estimator is the lower
bound on its variance. The Cramér Rao Lower Bound
(CRLB), denoted by C+

k , is equal to the inverse of Fisher
Information Matrix.

Equations to compute and propagate CRLB for the
Kalman Filter are discussed in this section. Another tech-
nique to analyse the operation of a filter, is to ensure that it
always satisfy the following inequality:

ΠΠΠ
+
k ≥ C+

k [57]

where, ΠΠΠ
+
k is the Mean Square Error Matrix, which is

computed using Equation [58].

ΠΠΠ
+
k ≈

1
M

M

∑
i=1

α
+
k (i)(α+

k )T (i) [58]

where α
+
k (i) = xtrue

k (i)− x̂+k (i) is the estimate error at the
ith Monte Carlo Simulation.

Given that both matrices are symmetric, Eq. [57] im-
plies that the eigenvalues of ΠΠΠ

+
k −C+

k should always be
positive. This suggests the following equation, although
the reverse condition is not necessarily true.

tr(ΠΠΠ+
k )≥ tr(C+

k ) [59]

The following equations can be used to recursively com-
pute CRLB for all time instances. [16]

A = HkC−k HT
k +Rk [60]

C+
k = C−k C−k HT

k A−1HkC−k [61]

C−k+1 = FkC+
k FT

k +GkQkGT
k [62]

In above equation C−k+1 is intialized as C−0 = P−0 .

5.3.2 Simulation Result

In Figure 17 we can see that all the eigenvalues of
difference matrix i.e. ΠΠΠ

+
k −C+

k are positive and decreasing
over all times. This implies that our filter estimate improve
with time step and error co-variance matrix ultimately
approaches the Cramér-Rao Lower Bound.

Fig. 17: Eigen Values of ΠΠΠ
+
k −C+

k

As expected, in Figure 18 we can see that the inequality
given in Eq. [59] is also satisfied by our filter.

This result validates the performance of the designed
Kalman Filter.
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Fig. 18: Trace ΠΠΠ
+
k and C+

k

6. Results and Discussions

In Section 4.4, the results for the designed Kalman
Filter were plotted. The error euler angle was observed
to measure the Filter’s performance. The gyroscopic bias
and the error associated with it was also plotted. From the
plots it is clear that the Kalman Filter is converging to an
accurate estimate.

As shown in Section 4.2, the filter’s accuracy, stability
and convergence time were affected by the choice of P0.
Hence, the P0 was tuned to obtain the optimal value, which
outperforms the untuned and extreme case values of P0 by
considerable margins.

To validate the Kalman Filter, the trace of P and the
norm of Kalman Gain was plotted with time. Both the
quantities were observed to be monotonously decreasing.
By performing quasi-Monte Carlo simulations in Section
5.2, the filter was tested for a large number of test cases in
which measurement vector and angular velocity spanned
over the entire 3D sphere. By doing so, a robust testing
of the filter was done and long term behaviour of the filter
was assessed. It was found that the Filter performed as
expected.

Finally in Section 5.3, we discuss the implementation
and results of Cramér-Rao Bound Method. We find that
the filter was behaving as expected and was satisfying the
inequalities described in Eq. [57] and Eq. [59]. The fact
that the eigenvalues of difference between MSME and
CRB were decreasing with time shows that the filter is
converging to the optimal estimate.

The numerous implementation and validation tests per-
formed, confirm the stability, accuracy and robustness of
the Kalman Filter. Furthermore, the study can be used to

determine the required specifications for various sensors,
as detailed in Section 6.1.

6.1 Selection of Fine Sun Sensor

Hardware constraints heavily affect the design strat-
egy for nanosatellites, due to the stringent size and power
constraints. For high accuracy ADCS systems, a fine sun
sensor or star tracker must be selected which satisfies both
pointing and technical budgets of the satellite. These com-
ponents are usually quite large and consume a lot of energy
compared to other components and sensors.

A selection methodology is shown in Figure 19, which
would use the already developed attitude estimation system
to check whether the sensor is compatible with the design
requirements. This assumes the choice of other hardware
and estimation algorithm, and thus translates the sensor
performance to the system operation. The performance
metric for attitude estimation, as described in Section 4.1,
can be used for direct comparison with the allocated point-
ing budget.

Fine Sun Sensor

FSS(i)

Attitude Estimation

MEKF

Mission

Requirements

Error budget for

Attitude Knowledge

Pointing requirement

satisfied?

Next Fine Sun Sensor

i = i+1

Valid Attitude Estimation System

NO

YES

Fig. 19: Approach to select the Fine Sensor

Keep in mind that the MEKF is implictly tuned to give
the best performance for a particular sensor. Furthermore,
qMC simulations can be run to obtain a reliable perfor-
mance limit for the hardware.

The block diagram shown in Figure 19 is iterative and
evaluates all the fine sun sensors under consideration. For
multiple sensors which satisfy the requirements, the deci-
sion can be based on the form factor and power consumed
by each.
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7. Conclusion

This paper puts forth an implementation of Murrell’s
version of Extended Kalman Filter. A preliminary litera-
ture review was conducted and various implementations
were compared to choose the best option based on the sci-
entific objective. The chosen implementation was derived
and theoretically verified. A dynamic satellite simulator,
along with realistic sensor models were developed to per-
form various tests. The filter was then implemented, and
parameters describing the convergence and tuning of the fil-
ter were examined. A metric to determine the accuracy and
stability of the filter was also devised. The performance of
the filter was well within the expected range.

To validate the working of the filter for all possible
cases, a quasi Monte-Carlo simulation was also performed.
Cramér Rao Bound Method was then executed to estab-
lish a lower bound on the error covariance matrix. The
behaviour of the norm of error covariance matrix further
verified the convergence of the filter. Finally, the data
collected from the test runs was used to determine the re-
quired specifications of a potential fine sun sensor. The
work presented in this study enabled the team to find the
optimal sensor based on the developed Kalman Filter.

The future work includes integrating the Kalman Filter
with control inputs and to perform a hardware in loop
testing so as to more critically analyse the performance of
the filter. This will be followed by integrating the Kalman
Filter with the Modes of Operation of Satellite.
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